rature coefficient of

% increase	
46 29 55 70 79	
78	

given pressure in-

eight produces a nple, at 3450 bars -fold increase over pentane increases ns. As previously cosity-temperature at high pressures. ompounds the inover 2760 bars at n of this quantity pounds containing PSU 19, and the ng changes in the rith pressure, inas the cyclopentyl es the isoparaffin, re compounds conlibit an increasing zation, PSU 110,

13₂, and 25₁-90₂ number of moles orimarily for compound having the average molecular mixtures listed in vidual compounds onnection will be

y, R. W. Schiessler properties of these s at atmospheric r, in many cases of measurement.¹⁴ n viscosity, which enic mixtures and ing aromatic rings, to 98.9°C.

obtained for vision of pressure at divergence of the mpound to that of 26, III, 254 (1946).

TABLE IV. Physical mixtures and corresponding chemical mixtures.

No.	1 mole	2 mole	Chemical mixture	PSU No.
252-1131	C_3 C_3	C_s — C — C_s C_s	C _s —C—C _s C ₃	110
25 ₁ -113 ₂ C ₈ -C	C_8	$\begin{array}{ c c c }\hline & -C_3-C_3-C_3-\hline \\ & &$	C_8-C-C_3	111
25 ₁ -90 ₂ C ₈ C	C ₈	C_2 — C_2	C_8 — C — C_2 —	19

physical mixture (C/P) is 5% except for one case, PSU 110 at 135°C and 345 bars. This single discrepancy is doubtless due to the fact that the viscosity here was very low and the accuracy of the rolling-ball method is least for short roll times. The average discrepancy

was only 3%. This agreement is truly noteworthy when it is remembered that the viscosity of both the mixtures and the corresponding pure compounds increase 5000 to 10 000 percent. The coincidence of the viscosity values indicates that with molecules of this size

Table V. Comparison of the viscosities of chemical compounds and corresponding physical mixtures at elevated pressures.

Mixture at °C	Atmos	345	689	1030	1380	1720	2070	2410	2760	3100	3450	(bars)
$(25)_2 + (113)_1$												
37.8°C	9.43	15.1	25.1 0.98	38.8	60.3	89.0 0.97	127	181 0.99	253 0.99	348 0.99	475	viscosity (cp)
60	4.99	7.84	12.1	18.0	26.3	37.5	52.4	72.0	97.9	129	171	ratio C/Pa viscosity (cp)
98.9	2.28	3.37	4.95	0.96 6.92	0.95 9.48	0.95 12.6	0.95 16.7	0.96 21.8	0.96 28.2	0.97 36.1	45.6	ratio C/Pa viscosity (cp)
135	0.99 1.47 1.00	1.01 1.96 1.11	1.02 2.79 1.05	1.01 3.76 1.02	0.97 4.98 0.99	0.97 6.42 0.98	0.97 8.21 0.97	0.97 10.2 0.99	0.97 12.8 0.98	0.97 15.7 0.98	19.3	ratio C/P^a viscosity (cp) ratio C/P^a
$(25)_1 + (113)_2$												2410 0/2
37.8°C	13.66	24.3	42.0° 0.98	68.2 0.98	108	167 1.00	253 1.00	376 1.02	552 1.02	798 1.02	1140	viscosity (cp) ratio C/Pa
60	6.79	11.5	18.4	28.8	43.2	63.7	92.8	132	185	258	351	viscosity (cp)
98.9	2.90	4.54 1.00	6.82	9.60	13.6 1.01	18.8	25.7 1.02	34.7 1.02	46.3 1.01	1.00 60.9 1.02	79.2	ratio C/P^a viscosity (cp) ratio C/P^a
$(25)_1 + (90)_2$												
60°C	12.27	23.7	$\frac{44.2}{0.97}$	79.1 0.97	140	236	393	650	1060			viscosity (cp) ratio C/Pa
98.9	4.16 0.98	7.21	11.8	19.0	29.7	46.0 0.95	69.8 0.95	103	154 0.95	224 0.95	326 0.93	viscosity (cp)

^{*}Ratio of viscosity of pure compound or chemical mixture to viscosity of physical mixture. For example the ratio of viscosity of chemical mixture PSU 110 to physical mixture 252-1131 at 37.8°C and 689 bars is 24.6/25.1=0.98.